Investigating Mechanisms of Fall Risk during Everyday Tasks on Ladders

Erika M. Pliner1,2, Daina L. Sturnieks2, Stephen R. Lord2

1Department of Bioengineering, University of Pittsburgh
2Falls Balance and Injury Centre, Neuroscience Research Australia

NSW Falls Prevention Network Forum – 11th May 2018
Injury Data on Falls

Falls: most common cause of a disabling injury\(^1\)
- 27% of disabling injuries

Fatal Falls from a Height

Fatal Falls from a Height\(^2\)

- Ladder
- Roof
- Nonmoving Vehicle
- Scaffold
- Stairs/Steps
- Structural Steel
- Other or Unknown

\(^2\)BLS. (2012). Census of Fatal Occupational Injuries Charts (Ed.).
Ladder Falls

Multi-country epidemiology reports on ladder fall incidence

Australia³, Denmark⁴, Finland⁵, Spain⁶, Sweden⁷, United Kingdom⁸ and United States⁹

72%-87% of falls among men³,⁴

Majority in non-occupational setting³,⁴,⁸,⁹

Highest rates among older adults⁴

Causes of Ladder Falls

Investigated?

- Sliding of base
- Foot slipping
- Over-reaching
- Loss of balance
Mechanisms Causing Ladder Falls

- **Setup angle**
 - Sliding of base
 - 75° from horizontal

- **Restricted foot placement**
 - Foot slipping
 - 75° from horizontal
 - Increase toe gap distance

- **Mechanism?**
 - Over-reaching
 - Loss of balance

Recommendation?

Potential Mechanisms of Ladder Fall Risk

Physiological, Psychological, & Cognitive abilities influence

1. Balance
2. Balance at Elevated Levels
3. Balance While Performing a Secondary Task

Potential Mechanisms of Ladder Fall Risk

Physiological, Psychological, & Cognitive abilities may influence

Balance while performing tasks on ladders
Goal of Study

To determine individual factors that influence ladder fall risk from unstable ladder user dynamics

Individual factors: physiological, psychological and cognitive abilities

Ladder fall risk: behavioral risk, task performance, and judgement error

Unstable ladder user dynamics: loss of balance and over-reaching
Ladder Experiments
Ladder Experiments

Washing the windows

Behavioral Risk

Changing a light bulb

Task Performance

Cleaning a gutter

Judgment Error
Washing the Windows

• “Are you willing to climb this ladder today to wash the window?”
 – From 1 step box to the riskiest ladder
 – Until response is “no”
 – Will not actual climb ladder

• Fall risk measure:
 Behavioral Risk
 • Likelihood of the ladder tipping

\[
\sum M_o = RF \ast \left(\frac{\text{Width}_L}{2} \cos \theta \right) - W_L \left(\frac{\text{Height}_L}{2} \sin \theta \right) - W_C (\text{Height}_C \sin \theta + COM_{\text{MaxDis}} \cos \theta)
\]
Changing a Light Bulb

- **Complete twice**
 - Naming animals
 - No cognitive distraction

- "**As quickly and safely as possible**"

- **Fall risk measure:**
 Task performance
 - Completion time
 - Stability on ladder

\[\text{COP} = \text{Center of Pressure} \]
Changing a Light Bulb

Younger adult

Older adult
Cleaning a Gutter

• “How many times do you think you need to move the ladder to clean the gutter?”

• Complete once

• “As quickly and safely as possible”

• Fall risk measure:

 Judgment error = Perceived Moves – Actual Moves
Cleaning a Gutter

Younger adult

Older adult
Risk of Climber Falling and Ladder Tipping
Risk of Climber Falling – Motion Data

Maximum COM displacement in experiments
Maximum COM displacement in baseline lean and reach tests

Greater value is associated with greater probability of the climber falling
Value > 1 indicates the climber would fall without holding onto an external object
Risk of Ladder Tipping – Force Data

Medial – lateral COP displacement

Greater medial – lateral COP displacement will indicate greater probability of the ladder tipping.

|left force – right force|

Greater difference between load cell forces will indicate greater probability of the ladder tipping.
Individual Factors
Assessments of Individual Factors

Physiological
- Physiological Profile Assessment (PPA)
- Upper limb PPA

Psychological
- Risk-taking assessment
- Anxiety assessment (GAD)
- Iconographical Falls Efficacy Scale

Cognitive
- Trail making test A & B

Preliminary Data
Washing the Window – Behavioral Risk

19 younger adults

Riskiest ladder chosen to wash a window

10 older adults

Riskiest ladder chosen to wash a window
Changing the Light Bulb – Task Performance

Time taken to change a light bulb

- **Younger adults**
- **Older adults**

Time (seconds)

Single task
Changing the Light Bulb – Task Performance

Time taken to change a light bulb

Time (seconds)

Younger adults
Older adults

Single task
Dual task

Time taken to change a light bulb
Cleaning the Gutter – Judgement Error

19 younger adults

<table>
<thead>
<tr>
<th>Judgement Error</th>
<th>Frequency (number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

10 older adults

<table>
<thead>
<tr>
<th>Judgement Error</th>
<th>Frequency (number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Difference in perceived and actual climbs taken to clean a gutter
Expected Outcomes

• Risk of the climber falling and ladder tipping
 – *We expect lower task performance and greater judgement error to be associated with greater probability of the climber falling or ladder tipping*

• Individual abilities to be predictors of ladder fall risk
 – *We expect a combination of physical, psychological and cognitive measures to influence ladder fall risk measures*
 • Lower and upper body stability, anxiety, executive function

• Interventions to reduce number of ladder fall injuries
 – *Health screenings*
 – *Training programs*
 – *Ladder redesign*
Thanks & Acknowledgments

Special Thanks!

Mentors
• Stephen Lord
• Daina Sturnieks

Study setup
• Hilary Carter
• Artemij Iberzanov

Testing assistants
• Brandon Tan
• Yun Xuan Khoo
• Ruiyi Liu

Recruitment
• Smart Step study research assistants

Falls, Balance and Injury Research Members
APPENDIX
Study Aims

To determine individual factors that influence ladder fall risk from unstable ladder user dynamics

Aim 1: Biomechanically validate measures of ladder fall risk

Aim 2: Determine individual factors that predict ladder fall risk

Aim 3: Investigate ladder use between low and high ladder fall risk groups
Statistical Analysis
Statistical Analysis

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Statistical Test</th>
<th>Dependent variable</th>
<th>Predictor variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanical analysis of the climber or ladder falling will be associated with greater ladder fall risk measures</td>
<td>Linear regression</td>
<td>Task performance</td>
<td>Risk of ladder tipping</td>
</tr>
<tr>
<td></td>
<td>Linear regression</td>
<td>Judgement error</td>
<td>Risk of climbing falling</td>
</tr>
<tr>
<td>Aim 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical, psychological and cognitive measures will predict ladder fall risk</td>
<td>Stepwise regression</td>
<td>Task performance</td>
<td>Physical measures</td>
</tr>
<tr>
<td></td>
<td>Stepwise regression</td>
<td>Judgement error</td>
<td>Psychological measures</td>
</tr>
<tr>
<td></td>
<td>Stepwise regression</td>
<td>Behavioral risk</td>
<td>Cognitive measures</td>
</tr>
<tr>
<td>Aim 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladder use will vary by low and high ladder fall risk groups</td>
<td>Chi-squared test</td>
<td>Use by ladder type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chi-squared test</td>
<td>Ladder use behavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chi-squared test</td>
<td>Fall history</td>
<td></td>
</tr>
</tbody>
</table>