Safely improving mobility in high risk groups: results of RESTORE and AMOUNT trials

Prof Cathie Sherrington
School of Public Health
Background

• Strong evidence for mobility benefits of supervised physiotherapy interventions for rehabilitation populations
• Long term ongoing physiotherapist input probably not ‘scalable’
• Physiotherapist-prescribed home exercise informed by behaviour change strategies +/- technology may help
• Impact of home exercise on falls not clear clinical groups
• Sherrington (2014): home-based exercise improved mobility but increased falls in people recently discharged from hospital
• Can we do better by adding fall prevention advice?
Exercise and fall prevention self-management after fall-related lower limb fracture: the RESTORE (Recovery Exercises and Stepping On after fracture) trial

Sherrington C¹, Fairhall N¹, Kirkham C¹, Clemson L¹, Howard K¹, Vogler¹, Close JCT², Moseley AM¹, Cameron ID¹, Mak J¹, Sonnabend D¹, Lord SR².

¹University of Sydney
²Neuroscience Research Australia, UNSW
RESTORE primary research question

Population: older people following fall-related lower limb or pelvic fracture who have completed usual care

Intervention: exercise and fall prevention self-management intervention

Control: usual care

Outcome: mobility-related disability and falls

Time: 12 months after randomisation
RESTORE intervention

- 10 home visits and 5 phone calls from a physiotherapist to prescribe an individualised exercise program with motivational interviewing
- 3 times/week strength and balance exercises: challenging balance and functional strength (based on Borg RPE “hard” level) and use of weight belts or vests as appropriate
- Fall prevention education through individualised advice from the physiotherapist or attendance at the group based “Stepping On” program (eight two-hour group sessions)
<table>
<thead>
<tr>
<th>Characteristic (n=336)</th>
<th>Mean (SD), range or %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>78 (9), 59-99 years</td>
</tr>
<tr>
<td>Gender</td>
<td>76% female</td>
</tr>
<tr>
<td>Fracture</td>
<td>58% hip; 10% pelvis; 12% ankle</td>
</tr>
<tr>
<td>Fall in last year</td>
<td>66%</td>
</tr>
<tr>
<td>3+ falls in last year</td>
<td>12%</td>
</tr>
<tr>
<td>SPMSQ</td>
<td>9.6 (0.9), 6 to 10</td>
</tr>
<tr>
<td>Co-morbidities at baseline</td>
<td>8 (3), 0 to 21</td>
</tr>
<tr>
<td>Medications at baseline</td>
<td>6 (4), 0 to 21</td>
</tr>
<tr>
<td>SPPB at baseline</td>
<td>7.5 (3), 2 to 12</td>
</tr>
</tbody>
</table>
Falls by group

IRR 1.04
(0.75 to 1.44),
p = 0.83
Between-group difference in SPS change = 0.07 (95% CI -0.02 to 0.16), p = 0.147
Between-group difference in change 0.68 (95% CI 0.15 to 1.22), p = 0.012
AMPAC mobility + daily activity score

Mean AMPAC(SE)

Baseline 3 month 6 month 9 month 12 month

Control Intervention
Conclusions

• No impact of the intervention on primary outcomes
• Significant impacts on secondary outcomes
• Greater impact on some measures in faster walkers
• Possible to teach a safe home exercise program to older people up to two years after fall-related fracture
• Falls and community participation may require more specific interventions
• ? Impact of more supervised intervention
Individualised technology prescription by physiotherapists to enhance function in rehabilitation settings

Prof Cathie Sherrington
School of Public Health
Funding: National Health and Medical Research Council Project Grant APP1063751

Chief Investigators: Prof Cathie Sherrington, Prof Richard Lindley, Prof Maria Crotty, Dr Annie McCluskey, A/Prof Hidde van der Ploeg, Prof Stuart Smith, Mr Karl Schurr

Associate Investigators: Prof Kirsten Howard, A/Prof Bert Bongers, A/Prof Stephane Heritier, Prof Leanne Togher, Dr Maggie Killington, Dr Simone Dorsch, Mr Daniel Treacy, Ms Siobhan Wong, Mr Ross Pearson, Dr Kate Scrivener, A/Prof Maree Hackett.

Research team: Dr Leanne Hassett, Dr Maayken van den Berg, Ms Sakina Chagpar, Ms Heather Weber, Ms Siobhan Wong, Ms Ashley Rabie, Ms Areti Dakopoulos, Ms Fran Moran, Ms Cath Kirkham, Ms Melani Boyce, Ms Anna Miles, Ms Janine Vargas, Ms Liz Lynch, Ms Linda Roylance, Mr Tarcisio Folly, Ms Caitlin Hamilton

Protocol paper: Hassett L et al, 2016, BMJ Open
Primary research question

Population: people with mobility limitations admitted to inpatient aged and neurological rehabilitation units

Intervention: addition of affordable technology to usual care

Control: usual care alone

Outcome: physical activity and mobility

Time: 6 months after randomisation
Intervention overview: 6 months

1. Intervention planning and trialing
2. Supervised inpatient sessions 30-60 mins ≥ 5x per week + usual care
3. Discharge planning and set up of technology in home
4. Independent sessions at home 30-60 mins ≥ 5x week, weekly to fortnightly physio phone/email/skype follow-up; ≤ 5 HV + usual care
Included technologies: recreational commercially available

Nintendo Wii Fit

Xbox Kinect

Fitbit

Smartphone physical activity apps
Included technologies: rehabilitation specific

Humac

iPad & iPhone apps

UTS stepping tiles

Fysiogaming
Prescription protocol task example: standing up

<table>
<thead>
<tr>
<th>Adaptive behaviour/problem</th>
<th>Set-Up</th>
<th>Easy</th>
<th>Medium</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight borne principally through intact side</td>
<td>Intact leg forward, on block, height of chair</td>
<td>Humac: scale
Fysiogaming: sit to stand (level 1-10); Assessment Centre
Stepping tiles: loading the leg in sitting; reaching in sitting; sit to stand
iPAD App: AMOUNT preparation for standing up; low difficulty T-Rex exercises in sitting</td>
<td>Humac: scale
Fysiogaming: sit to stand (11-20)
iPAD App: AMOUNT standing up; medium difficulty
Stepping tiles: sit to stand</td>
<td>Humac: Force vs. Time
Fysiogaming: sit to stand (21-30)
iPAD App: AMOUNT standing up; high difficulty
Stepping tiles: sit to stand</td>
</tr>
</tbody>
</table>
Prescription protocol technology example: Nintendo Wii

Maintaining a standing position

<table>
<thead>
<tr>
<th>Software game</th>
<th>Game length</th>
<th>Description</th>
<th>Movement/Feedback</th>
<th>Progress/Motivation</th>
<th>Issues/Additional demands</th>
<th>Rehabilitation modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiiFit Balance/*</td>
<td>≤ 2mins</td>
<td>The player is required to step on the spot and move weight (SLS) between their legs on the balance board to walk along the tightrope, semi-squat then extend to avoid objects</td>
<td>ML direction/does not allow error, KOR distance walked before fall, time taken to complete</td>
<td>In game / leaderboard</td>
<td>Performance was better with SLS</td>
<td>Can perform as step touch exercise to block infront</td>
</tr>
<tr>
<td>Tightrope tension</td>
<td>game stops if fall off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant characteristic</td>
<td>Intervention n=149</td>
<td>Control n=151</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yr), mean (SD); range</td>
<td>70 (18); 18-101</td>
<td>73 (15); 21-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>77 (52)</td>
<td>74 (49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurological condition, n (%)</td>
<td>80 (54)</td>
<td>82 (54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognition (MMSE); mean (SD), range</td>
<td>27 (3); 15-30</td>
<td>27 (3); 17-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of co-morbidities; mean (SD)</td>
<td>5 (3)</td>
<td>5 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking status prior to hospitalisation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- did not walk</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- indoor walker only</td>
<td>17 (11)</td>
<td>20 (13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- community walkers</td>
<td>132 (89)</td>
<td>130 (86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology use in month prior to hospitalisation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- computer</td>
<td>60 (40)</td>
<td>63 (42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- tablet</td>
<td>44 (30)</td>
<td>35 (23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- smartphone</td>
<td>55 (37)</td>
<td>52 (34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- gaming console</td>
<td>6 (4)</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- activity monitor</td>
<td>7 (5)</td>
<td>2 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
0.3 points greater improvement in intervention group 0 to 3 weeks (95% CI 0.2 to 0.4, p< 0.01)

0.2 points greater improvement in intervention group 0 to 6 months (95% CI 0.1 to 0.3, p< 0.01)

Differential effect by baseline mobility (p<0.01)
Secondary mobility outcomes

DEMMI Score

Step Test

Maximal Balance Range Test

Single leg stance
Falls by group

Control

Intervention

Percentage of participants

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
Conclusions (thus far)

Tailored intervention using technology, targeting specific mobility limitations and promoting physical activity, in addition to usual rehabilitation

• feasible (with physiotherapy support)
• enjoyable for participants (with physiotherapy support)
• improved mobility and some aspects of physical activity
• appears to have greater impacts in younger people (<76)
• most improvements occurred with more intense inpatient intervention, but maintained with less intense community intervention
• no impact on falls
Overall conclusions

• Can safely improve mobility with physiotherapy-prescribed “functional” exercise in these two high risk groups
• Does not appear that we can prevent falls in rehabilitation populations with home exercise plus fall prevention advice
Acknowledgements

• NHMRC salary and project funding
• Colleagues, staff, students, study participants