Delirium and Falls Falls Prevention Network Forum 19 May 2017

A/Prof Gideon Caplan Prince of Wales Hospital

Delirium and Falls

- Both 'Giants of Geriatric Medicine'
- Significant overlap
- Both cause significant morbidity and mortality
- Delirium is the most common diagnosis affecting older people in hospital, affecting 25% of people over 65 admitted
- Falls are common in hospital and in the community
- Many shared risk factors
- Why think about them together?

Is there a relationship between falls and delirium in hospital?

Some things in common

- Can happen at any age, but more common with older patients
- Lengthen ALOS
- ↑ risk of morbidity/mortality/NH placement
- Some differences
 - Diagnosis of falls in hospital usually clear
 - Delirium: 50% of cases are missed, esp hypoactive delirium

Falls in the General Hospital

Lakatos BE. Psychosomatics 2009; 50: 218-26.

- Chart review of **252 patients who fell** at Massachusetts General Hospital in Boston
- Looked for evidence of delirium (diagnosis; use of a synonym or; criteria for delirium, ie disturbance of consciousness, change in cognition, fluctuations through the day, and evidence of physiological derangements)
- 60% of fallers unable to be discharged home directly
- Patients with delirium
 - 18.7% had diagnosis recorded,
 - 72% of hospital records included ≥1: confused, change in mental status, unsteady gait, disorientation, mental status improved, required restraints, memory deficit, dizziness, sundowning, decreased responsiveness, somnolent, and syncope

• 96% of patients who fell showed evidence of delirium

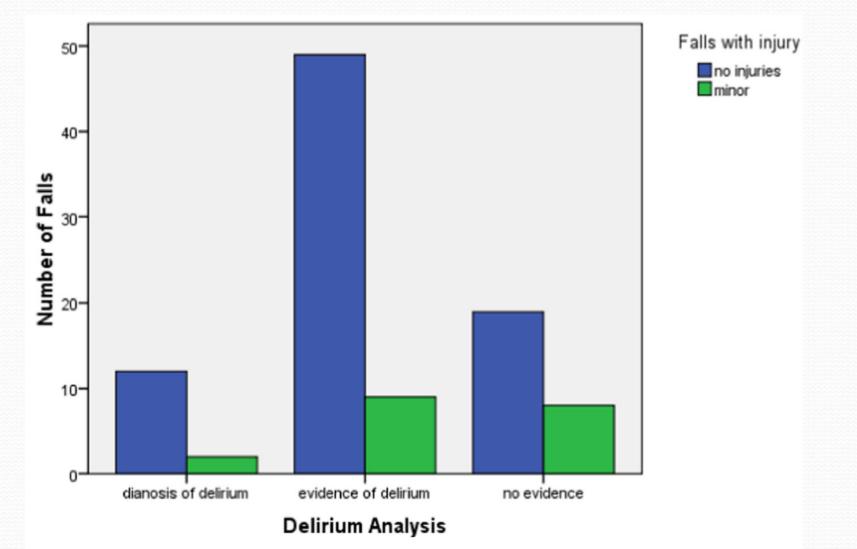
Why was delirium not diagnosed?

No charts included the terms:

- disturbance of consciousness;
- 2) change in cognition;
- 3) fluctuations during the day and night; and

Mentioned: a change in cognition (33%), encephalopathy (25%), an acute confusion syndrome (14%), hepatic encephalopathy (11%), delirium tremens (6%), a toxic metabolic state (5%), and agitation (2%).

Terms in the electronic record: confused, a change in mental status, an unsteady gait, disorientation, mental status improved, required restraints, a memory deficit, dizziness, sundowning, decreased responsiveness, somnolent, and syncope were used by staff to describe the patient who fell and manifested cognitive impairment.


This study has been replicated

Babine RL. Psychosomatics 2016; 57: 273-82.

- Maine Medical Center which has a HELP delirium prevention program
- Retrospective review of 99 patients who fell
- 73% had evidence or a diagnosis of delirium

Interaction: delirium + injury from fall

Babine RL Psychosomatics 2016; 57:273-82

How did falls + delirium interact on ALOS

Lakatos BE. Psychosomatics 2009; 50: 218-26.

Patients with	ALOS (days)
Neither fall nor delirium	5.83
Fall only	15.0
Fall + diagnosis of delirium	17.5
No fall, but evidence of delirium	14.6

Could therapy for delirium prevent falls?

- We do not have any drugs licensed to treat delirium in ED or on the wards
- Antipsychotics/BZDs will increase falls
- What about multicomponent interventions?
- Two 2015 meta-analyses have examined this question
 - Slightly different protocols: would their results differ?

Original Investigation | HEALTH CARE REFORM

Effectiveness of Multicomponent Nonpharmacological Delirium Interventions JAMA Intern Med. 2015;175(4):512-520. doi:10.1001/jamainternmed.2014.7779 A Meta-analysis

Tammy T. Hshieh, MD; Jirong Yue, MD; Esther Oh, MD; Margaret Puelle; Sarah Dowal, MSW, MPH; Thomas Travison, PhD; Sharon K. Inouye, MD, MPH

- Hospital Elder Life Program: interdisciplinary team + trained volunteers to deliver: reorientation; early mobilisation; therapeutic activities; hydration; nutrition; sleep strategies; hearing + vision adaptations
- Newer multicomponent interventions for surgical patients
- Aim to meet holistic needs of patients and prevent delirium
- Meta-analysis of 14 articles, incl 2 from Australia

Preventing delirium + falls

Hshieh TS. JAMA Internal Med 2015; 175: 512-20.

Table 2. Meta-analysis of the Effect of Multicomponent Nonpharmacological Delirium Interventions

	Intervention		Control		 Odds Ratio or Mean 	
Variable	Outcome Events	Total Patients	Outcome Events	Total Patients	Difference (95% CI)	<i>I</i> ² Value, %
Delirium Incidence						
RMTs ^{5,17,30,32}	83	977	137	1009	0.56 (0.42 to 0.76)	0
Non-RMTs ^{16,20,26-29,31}	46	752	164	1013	0.37 (0.27 to 0.53)	20
Combined	129	1729	301	2022	0.47 (0.38 to 0.58)	18
Falls						
RMTs ^{18,32}	18	245	64	240	0.36 (0.22 to 0.61)	0
Non-RMTs ^{14,20}	6	274	31	279	0.46 (0.19 to 1.10)	0
Combined	24	519	95	519	0.38 (0.25 to 0.60)	0

Overall, 53% decrease in odds of getting delirium, and 62% decrease in odds of falling Equivalent to preventing 4.26 falls per 1000 patient days

Forest plot figure

Hshieh TS. JAMA Internal Med 2015; 175: 512-20.

Falls	Odds Ratio (95% CI)	Decreased falls, favors intervention	Increased falls, favors control	Weight, %
Babine et al, ¹⁴ 2013	0.49 (0.19-1.27)		<u>.</u>	10.9
Caplan and Harper, ²⁰ 2007	0.33 (0.04-2.93)		<u> </u>	2.5
Martinez et al, ³² 2012	0.11 (0.01-2.05)		:	3.3
Stenvall et al, ¹⁸ 2007	0.38 (0.23-0.65)			38.2
Fixed-effect model: P<.001	0.38 (0.25-0.60)	$\overline{\diamond}$		100
Heterogeneity: $I^2 = 0\%$, $P = .78$				
		0.005 0.100 1.0	000 10.000	200.000

SYSTEMATIC REVIEWS

Preventing delirium: should non-pharmacological, multicomponent interventions be used? A systematic review and meta-analysis of the literature

Felipe Martinez^{1,2}, Catalina Tobar^{3,4}, Nathan Hill⁵

Age and Ageing 2015; **44:** 196–204 doi: 10.1093/ageing/afu173 Published electronically 25 November 2014

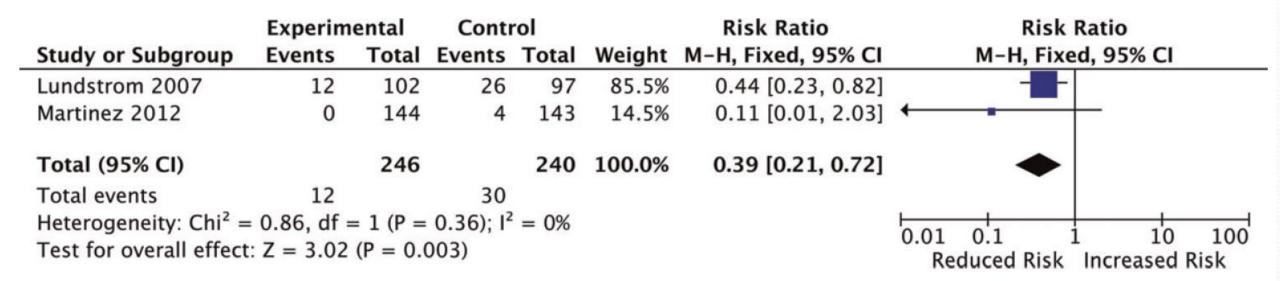


Figure 4. Accidental falls.

Comparison with other interventions for

preventing falls in hospitals

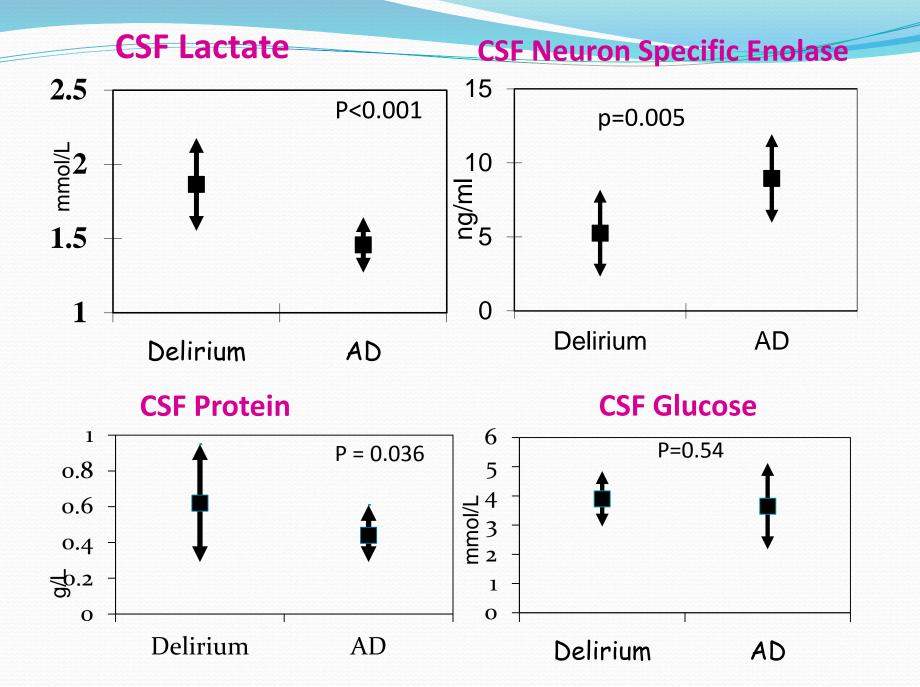
Cameron ID. Cochrane Review 2012 DOI: 10.1002/14651858.CD005465.pub3

Don't reduce falls

- Additional physiotherapy (supervised exercises) (2 studies)
- Vitamin D supps (1 study)
- Carpet flooring: ↑falls cf vinyl
- Computer based falls prevention toolkit
- Acute Geriatric ward
- Behaviour advisory service
- Educational materials

Reduced falls

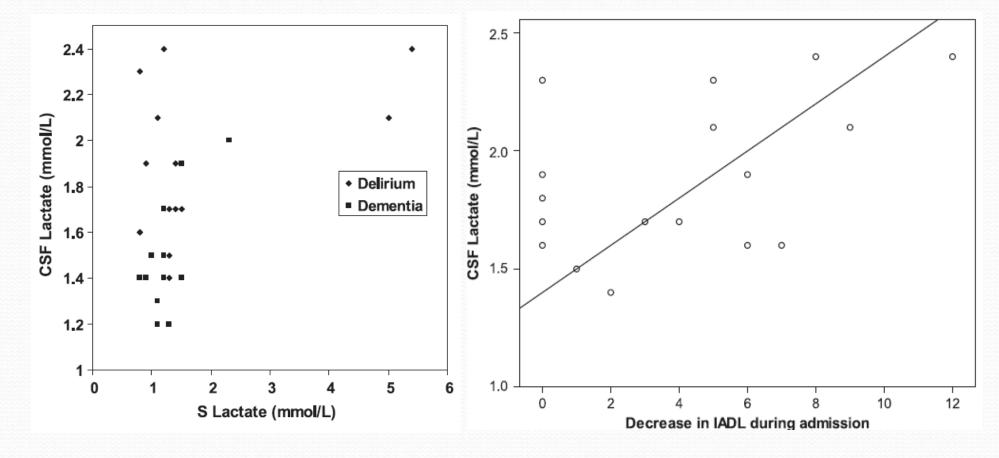
- Educational session by a trained research nurse reduced falls
- Multifactorial interventions (1 targeting falls): education; exercise; falls risk alert card; hip protectors (1 orthogeriatric service)


Other effects

Hshieh TS. JAMA Internal Med 2015; 175: 512-20.

 Multicomponent interventions had no significant effect on institutionalisation, ALOS, change in functional or cognitive status

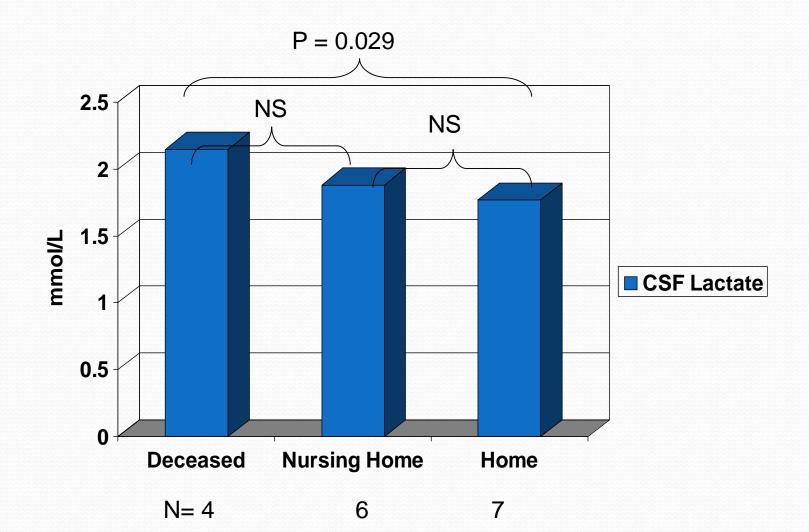
Other therapeutic options for delirium?


- Research into delirium pathophysiology provides insights to potential therapeutic targets
- Neuroinflammation
- Altered glucose metabolism

Caplan GA. J Gerontol Med Sci 2010; 65A: 1130-6.

CSF Lactate

Caplan GA. J Gerontol: Med Sci 2010; 65A: 1130.

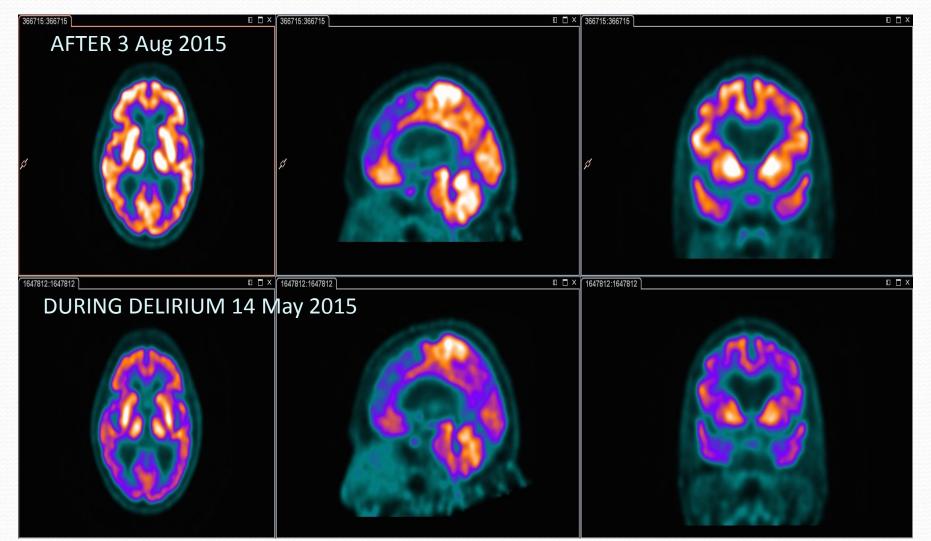


Correlation Coefficient = 0.15; p = 0.52

Correlation Coefficient = 0.48; p = 0.043

Prognostic value of CSF Lactate in delirium

Caplan GA. J Gerontol: Med Sci 2010; 65A: 1130.



What does this mean?

- \uparrow lactate indicates \uparrow anaerobic glycolysis
- \downarrow neuron specific enolase indicates \downarrow aerobic glycolysis
- Complementary evidence of disordered cerebral metabolism
- Another way to measure cerebral glucose metabolism is with a fluorodeoxyglucose PET brain scan

2-18F-fluoro-2-deoxy-D–glucose PET Scans

Haggstrom LR. JCBFM 2017 DOI: 10.1177/0271678X17701764

Delirium research

- This explains why antipsychotics worsen delirium
- Glucose metabolism a potential target for pharmacological intervention in delirium
- At a critical and exciting juncture
- Stay tuned

Australasian Delirium Association proudly presents

A Masterclass with Prof Sharon Inouye Professor of Medicine, Harvard Director, Aging Brain Center Beth Israel Deaconess Medical Center

Monday 23rd October 2017

Scientia Building UNSW

Details on ADA website: delirium.org.au